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We present a new computational model of crystal growth, in which
the interface between liquid and solid is explicitly tracked, but the
measurement of curvature is simplified through the assumption that the
crystal is a polygon having a limited number of possible normal direc-
tions. This method has several advantages. Computatians invalving the
motion of the interface are relatively fast as compared to "'phase field”
atgorithms but, unlike many “curve tracking’ methods, it is easy to
detect and make topological changes. The computational algorithm is
described, incfuding a method for “shattering” interface edges. The
effects of variations of both physical (surface energy, mobility) and
non-physical (mesh size) computational parameters have been
investigated and produce results consistent with theory. © 1994
Academic Press, Inc.

1. INFRODUCTION

The study of solidification is significant from three
perspectives. Even the most superficial observer must note
the wonderfully intricate patterns formed in a snowflake.
A more practicai observer would realize that a study of
crystallization could have a profound impact on industrial
applications. Finally, a theoretician would note that a
snowflake is a remarkable example of spontaneous pattern
formation. These three motivations, the aesthetic, the
practical, and the theorctical, all drive the study of
crystallization.

Physically, a crystal is an ordered lattice of atoms in a
solid (2, p. 20]. The types of atoms, the particular ordering,
and the extent of the ordering all have important effects on
the macroscopic behavior of the crystal. In the 1930s and
1940s, Ukichiro Nakaya discovered that the structure of a
snowflake was determined by the temperature and the
humidity of the atmosphere in which it formed [12].
Further, if the conditions changed during growth, the type
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of growth changed instantaneously [6,7]. This suggests
that the growth of snow crystals should be explainable
through the use of a relatively simple collection of rules. As
a more practical example, when ailoys solidify, small
treelike {dendritic) structures form [2, p. 94]. The size and
shape of these structures can have large effects on the
strength and other properties of the alloy, and it can be
observed that changing the temperature or concentration of
impurities in the alloy change the way these structures form
[3, Chap. 10].

Even with a simple model of crystallization, the actual
intetface produced may be extremely complex. For the
standard “sharp interface”™ model, analytic solutions are
possible in only a very few cases [ 9]. Several computational
schemes have been implemented [16], but computational
solutions have their own problems. Models of crystai
growth typically involve a reduction in the total free energy
of the system, the free energy consisting of a “bulk” term
that causes the system to freeze, and a “surface” term which
penalizes the creation of new interface and which is
described locally by the curvature of the interface. This
makes computations of the motion somewhat tricky, as the
simplest direct approach requires the measurement of the
second derivative of the curve. Several methods have been
used to approach the problem indirectly by not actuaily
measuring the curvature, but they tend to be computa-
tionally expensive and restricted in the functional forms of
the surface energies that can be modeled. The “crystalline
curvature” method presented here, on the other hand, can
be used both to model truly faceted surface energies, as well
as to approximate smooth ones. 1t uses an interface tracking
scheme that avoids most of the problems associated with
other interface tracking schemes, since it does not require
the measurement of second derivatives and it can quickly
detect topological changes. Motion by crystalline curvature
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alone is discussed in [18], and computations with it are
shown in {15]. It is also straightforward to investigate the
effects of changes in the governing equations. In the model
presented here, interface motion is heavily influenced by a
temperature field. A theoretical model describing the
motion of faceted curves in a diffusion field was discussed in
[5, 14] under the implicit assumption that the number of
edges may not increase, but this assumption is clearly non-
physical in many cases, and we will describe a method to
determine the appropriate “breaking points” or “shattering”
of an edge under the influence of a temperature field.

2, THEORETICAL BACKGROUND

The fundamental driving equation of our model is that
the rate of advance of the interface at any point s is given by
v(s) = M(s) —u(s) + aH 4(s)). (1)
M, the mobility, models the attachment kinetics of the inter-
face, or the rate at which the interface can respond to the
driving force —u+ 6H ;, (where & is a scaling factor). In this
paper we make the assumption that M depends only on the
orientation of the interface. The two terms of the driving
force model the effects of temperature (or, equivalently, con-
centration of an impurity) and the surface energy between
the solid and the liquid. The undercooling u, which we take
10 be dimensionless [9], satisfies a diffusion equation
modified by a term for the release of latent heat at the inter-
face:

%=V2u+u(x, 1) dg. (2)
il4
Note that, as written here, the diffusion coefficient is the
same in the solid and in the liquid, but this is not required
computationally. ¢ is a scaling factor for the surface energy,
and H, is the weighted mean curvature of the curve, with
respect to the surface encrgy functional &: R? » R which is
assumed to be convex and homogeneous of degree 1,

The weighted mean curvature may be defined in several
ways [17], but the most appropriate for studying crys-
talline curvature is the foliowing: the weighted mean cur-
vature at a point p on a curve § in R? is the negative of the
rate of change of surface energy with volume swept out by
appropriate deformations near p in the direction of normals
to the surface divided by the average energy density. Exactly
which types of deformations are “appropriate” depends on
the nature of @ [17].

For any surface ¢energy density function @: R* - R, we
define the Wulff shape 10 be the set

Wo={xeR* x.u< P(u) ¥ unit vectors uc R*}. (3)
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FIG. 1.

Definition of 6+, 6, A(n,).

If the surface energy functional & is such that the Wulfl
shape W, is a polygon, we say that @ is crvstalline or fully
Jaceted. For such surface energies, the weighted mean cur-
vature assumes a particularly simple form. Let S be a closed
polygonal curve having only those normail directions found
in the Wuiff shape %7, such that any two adjacent edges
have normals which are adjacent in the Wulff shape (zero-
length edges having the appropriate normals are assumed to
be inserted otherwise). Then by admitting only variations
which move an entire edge e, the weighted mean curvature
can be seen to be [15]

(BF(e)+3(e)

Hy(e)= )

A(e)/l(e) (4)

for ¢, where 5 is + 1, depending on whether S is convex or
concave at the positive (left) end of e (with respect to its
orientation), and similarly for 5. A(e) is the length of the
edge in the %, having the same exterior normal as e, and
l{e) is the length of ¢ itself (see Fig. 1). If the length /{e} is
zero, then Hgle) is + o or 0 according to the sign of
—{(6* +37). Of course, edges with H,(e)= 4+ o0 would
immediately move to lengthen in motion by (crystalline)
curvature [19, 157,

3. COMPUTATIONAL ALGORITHM

Armed with an expression for weighted mean curvature
for faceted interfaces, as well as an appropriate method for
shattering edges under the influence of the undercooling
field, it was possible to write a computer program to model
the evolution of faceted curves in a diffusion field.

The computer program is written in C+ +, an object-
oriented language. This means that computer structures can
closely emulate the physical structures they are to represent.
Each class defines certain pieces of information which are
stored by objects of that class, as well as functions (known
as methods) which are used to manipulate the object’s data.
Computations have two major parts: setting the initial
conditions and moving the crystal. Obviously, the first is
executed only once, while the second is iterated until the
preset termination conditions are met.
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3.1. Basic Structures

The problem of determining the development of the
system may be divided into two parts, motion of the inter-
face and the evolution of the temperature field. Three basic
classes are used {o describe the interface. The “edge” class
contains information pertaining to a single edge. The “inter-
face” class is intended to represent a single crystal. Third, a
“Wulff” class contains information common to alt crystals
sharing the same surface energies. The temperature field is
represented by a member of the “field” class.

3.1 Field

Objects of the field class are representations of scalar
functions defined over the computational domain. Function
values are stored on a rectangular grid, and values between
grid points are determined through bilinear interpolation.
Since the primary purpose of the class is to provide a way
to approximate a temperature field, it contains a method to
solve the heat equation on the ficld for a specified time.
Methods also exist to efficiently initialize and adjust grid
values. Not a part of the field class proper, but related to it,
is the code which calculates and stores an approximation to
the characteristic function of a crystal. By subtracting
characteristic functions of interfaces in successive time steps,
the correct amount of latent heat may be released behind a
moving interface.

3.1.2. Wulff

The “Wulff” class contains information about the surface
energy and mobility. Arrays store the allowed normal direc-
tions, the energies in those directions, and the mobilities in
those directions. Also stored are several frequently used
values: the length of the edge in a given direction and
trigonometric functions of the angles between consecutive
normals. The Wulff object is intended to store information
about the anisotropy of the systems, storing a “normalized”
surface energy function. The actual capillary length used in
the computation is generally given by an energy multiplier
chosen by the user and the mobilities, by a mobility
multiplier.

3.1.3. Interface

The interface object’s primary purpose is to keep track of
all the edges in the crystal and to adjust their combinatorics
as necessary. It also contains a pointer to a Wulff object
which defines the allowed directions, energies, and
mobilities for edges in the crystal, and a pointer to a field
object. Pointers to edges act as the heads of lists. The
“master list” is simply a list of all edges in the interface. It
stores no information about the orientation of the edges.
Lists stored for each set of parallel edges make it possible to
easily locate topological changes in the crystal. By sorting
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each of these lists by the perpendicuiar height of the edge
from the origin, the computation can determine when two
edges with opposite orientations have passed each other,
and hence they may have produced a change in the topology
of the crystal. The class defines methods to perform
actions such as movement or shattering on all edges
“simultancously.” Other methods weed out edges which
have shrunk to zero length and adjust the combinatorics
when oppositely oriented edges have passed each other. The
interface object can also make reports about the size and
shape of connected components, removing those which
shrink to zero size.

3.14. Edge

In principle, each edge only requires four pieces of infor-
mation to define it. A point in R? (the “location” of the edge)
and one of the allowed normal directions describe the line
containing the edge, while pointers to the two adjacent
edges delimit the actual line segment that is the edge. In
practice, however, several other pieces of information are
stored as well. For simplicity in keeping information in the
interface current, each edge has a pointer to the interface
object of which it is a part. Each edge is also a node in
several linked lists and must contain pointers to the next
and previous members of each list. Finally, there are
variables devoted to bookkeeping and increasing the
execution speed by storing frequently used values.

Several methods are defined to report and adjust charac-
teristics of the edge. In the first category are methods to
report the right and left endpoints of the edge, the length of
the edge, the minimum, maximum, and mean temperature
along the edge, and the weighted mean curvature of the
edge. Important methods of the second type are those to
move and shatter the edge (see the sections on movement
and shattering below).

3.2, Imitialization and Termination

The dendritic growth simulations shown below begin
with a single seed centered in the computational domain.
The shape and size of this seed are read in from a text file
prepared by hand. Typically, the starting seed is Wulff-
shaped, but if any normal directions have been exciuded,
they are added by the program before actual computation
begins, The starting seed is generally chosen just large
enough to grow, due to the undercooling, rather than
shrink, due to surface energy effects, and so the initial tem-
perature field is simply assigned a constant value. In some
simulations it is desirable to start with a somewhat larger
nitial seed, in which case the interior of the seed is raised to
a higher temperature and heat is allowed to diffuse on the
temperature field 5o as to approximate the situation afier a
small period of growth. The user also chooses values for
various operating parameters such as the energy and
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mobility multipliers mentioned in Section 3.1.2, the density
of the temperature grid, and the minimum edge length which
will be discussed in Section 3.3.3. Computations are
generally continued until the temperature field on the
boundary of the computational domain has changed to a
significant degree; in an experiment the boundary would
effectively be infinitely far away, and so it should not be
allowed to affect the computations.

3.3. Evolution Algorithm

The evolution of the system has two parts: motion of the
interface and evolution of the temperature field. Interface
motion has three fundamental steps: movement, merging,
and shattering, and the ficld is updated in the heat release,
and heat flow steps. Note that for the most part these steps
ar¢ independent of one another and it dees not matter in
what order they are performed. In fact, the “interface” steps
may be applied several times between heat release and flow
steps if, for example, a very small edge moving very rapidly
results in a very small time step, but little heat release. It is
important, of course, that each step be performed frequently
enough in the computational time scale that inaccuracies do
not develop and that the heat be diffused for the same
period of time as is allowed for interface motion.

3.3.1. Movement

The system of ordinary differential equations describing
the movement of the interface is solved wvsing a variation on
the standard finite-difference (Euler) method. For each edge
e, the velocity in the normal direction of the edge is
calculated according to the formula v{e)= M(n(e))
(—u(e)— (6% +67) DA(v,)/2l(e)). Two forms of ii(e) have
been used: the low temperature along the edge and the mean
temperature along the edge. Both methods have some
physical justification, but require slightly different computa-
tional schemes, particularly in the shattering step described
below. The low temperature is determined by computing the
temperature at many points along the edge and taking the
minimum. The mean temperature can be computed exactly
by taking advantage of the bilinear interpolation. It should
be noted that it would not be diffult to use a different for-
mulation of the edge velocity, so long as an appropriate
shattering routine is written to match. The speed thus
obtained is averaged with the speed determined during the
last step in order to smooth out local errors as much as
possible,

Once the speed of each edge is determined, a time step is
determined. The step may not be larger than a maximal
preset time step. Further, no edge may move further than a
preset distance (generally one-fourth of a temperature grid
square). Finally, and most importantly, no edge with non-
zero curvature can shrink to zero length. This is because the
curvature term in the speed of the edge would go to infinity
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FIG. 2. Illustration of the meaning of a “flipped edge.”

as the edge shrank to zero length. Note that the size of the
time step thus changes at nearly every iteration. Once the
time step A¢ has been chosen, the location x of each edge is
moved a distance v{e) 4¢ in the normal direction of the edge.

3.3.2. Merging

The merging step performs four types of adjustments to
the combinatorial structure of the interface, i.e., how the
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FIG. 3. A demonstration of topological changes in a crystal. The Wulll
shape for this computation has eight sides, with the energy in the horizon-
tal and vertical directions being 1 and 0.9 ﬁ in the diagonal directions.
The overall energy multiplier is 0.001. Mobility is proportional to energy,
with a multiplier of 80. The grid density is only 10x10 (the grid is
100 x 100) and the undercooling is 0.7, The time shown is 0.191, and there
are 15,026 edges. Computational instabilities introduced by the low grid
density and amplified by the high mobility have resulted in a great deal of
side branch activity. Note that the tertiary side branches occur only on
the “front” of the secondary side branches, a phenomenon seen in
experiments [4].
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edges abut each other, First, the whole interface is checked
for “small” connected components. If a connected sequence
of edges contains an area smaller than one grid cell and the
area enclosed is shrinking, those connected edges are all
removed. Second, any “flipped” edges are removed. An edge
has “flipped” if its normal direction points into the solid (see
Fig. 2). Next, adjacent parallel edges are merged into a
single edge by removing one. Generally the only way two
adjacent edges become parallel is by the removal of flipped
edge between them. Finally, any topological changes in the
crystal are detected through the use of linked lists of paraliel
edges ordered by perpendicular distance from the origin, If
two edges change their order, then it is possible a topologi-
cal change must be made. Once the possibility of a topologi-
cal change is detected, it is easy to actually make the change.
Figure 3 shows an example of a very heavily undercooled
computation on an underresolved temperature grid which
has produced a great deal of dense side branch activity. It
can be seen that many topological changes have occurred;
see the region near coordinates (2.5, 4.5), for example. Also
note the small area of liquid completely surrounded by solid
near coordinates (6.3). The fact that topological changes
may be quickly detected in this way is one of the strengths
of this method: there are over 15,000 edges in Fig. 3, and
checking such a complex figure for crossings every time step
would be a formidable task for most computational
methods.

3.3.3. Shattering

The shattering step is key to the simulation of dendritic
growth. In this step, zero-length edges are inserted so as to
allow parts of an initial edge to move faster than other parts.
To date, two different algorithms have been used for deter-
mining when and where these zero-length edges be inserted.

The first aigorithm is general purpose and would be
reasonable to use with any choice of the movement algo-
rithm mentioned in 3.3.1, at the cost of being more inexact
and time consuming. It makes the assumption that if
enough edges are inserted, the best shattering well deter-
mine itsell, relying on “trial and error.” Specifically, zero-
length edges are inserted midway between every adjacent
pair of temperature critical points along the edge, oriented
so that the break will expand if the colder side should move
faster. The whole interface is then moved and any of the new
edges which have flipped are removed. Finally, ali the edges
ar¢ returned to their original position so that the deleted
edges will have no effect on the bona fide movement step.

The more “exact” algorithm is tailored for using the mean
temperature along an edge to determine its velocity and
makes use of the analysis in [137]. In practice, only two
types of temperature distributions are found along an edge:
monotonic from one end to the other, or a single local maxi-
mum or minimum in the interior of the edge, and the algo-
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rithm assumes this is always the case. The edge is then
broken so that every small piece of it satisfies one of three
criteria; it has zero weighted mean curvature, it is at the end
of the original edge, or it has a speed equal to the mobility
times the undercooling at its ends which is the speed at
which a zero-curvature edge would travel if it were located
just off the end of the part. The routine is recursive so that
every edge will break as much as possible,

With both of these methods, an edge is shattered only if
it is longer than a certain predefined “minimum edge
length.” Thus varifolds are approximated by sequences of
short sides having alternating normal directions. The choice
of this minimum length is something of an art. Having it be
too large can produce extra numerical noise, but if too small
a value is chosen, the number of edges which are produced
grows substantially. Most of these extra edges are very
small, however, and if an edge is too small compared to the
size of a single temperature field cell, then it is unable to
accurately resolve temperature differences along its length,
and so it does not increase the accuracy of the computation
(see Section 4.1.3). Thus in most of the computations shown
here, the minimum edge length has been taken to be J of the
distance across a grid cell. It is important to note that edges
may become smaller than the “minimum edge length”
through the movement of adjacent edges, but they will not
be shattered.

3.3.4. Heat Release

The heat release step is designed to compute and place the
latent heat produced or absorbed during crystailization or
melting. It, like the heat flow step below, makes use of code
written by Robert Almgren for the purpose [1]. When the
computation is begun, an object y, of the field class is
created to store an approximation to the characteristic func-
tion x of the solid. The subroutine which produces this
characteristic function loops though each edge of the inter-
face and calculates exactly how much of the solid is con-
tained in each grid cell of the field. These calculations are
carried out in such a way as to preserve | z, | xy, | vy, and
{ xpx. Every time the interface moves, an object g, of the
field class stores the new characteristic function of the crys-
tal. We then add L{x,(i)— x,({)) to each temperature cell
T({) in the diffusion field (where L is the latent heat of
fusion), increasing the temperature where new crystal has
formed and lowering it where the crystal has melted. The y,
is then stored in place of y, for use in the next iteration.

3.3.5. Heat Flow

Once a time step At has been determined in the movement
step, the heat equation must be solved on the temperature
field for 4z, Solving the heat equation on a rectangular grid
is 4 standard and well studied problem. The method used is
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a straightforward explicit (or forward Euler) method [1].
At every time 7 + At the new temperature 7{/, j, t + At) of a
point (i, j) on the temperature grid is set at a weighted sum
of T(ix 1, j, 1), T(i, jx£ 1,1), and T(i, J, 1) itself. The coel-
ficients used depend on the distance between grid cells in
each direction. For the solution to be stable, the time step Az
must be less than (1/2D){4x)?, where D is the diffusion coef-
ficient and Ax is the minimum distance across a grid cell. If
At is too large, several iterations of the solver are made with
smaller time steps that sum to 4¢. This method vectorizes
well, allowing an easy transition to a supercomputer if that
becomes desirable, and it is possible to have different dif-
fusivities in the sclid and in the liquid. The forward Euler
scheme also can handle the non-smooth temperature dis-
tributions that result immediately after heat is added, As
would be expected, for medium to large grids the heat flow
step 1s the most time consuming,

4. COMPUTATIONAL RESULTS

In the computations discussed below, no particular
efforts were taken to ensure that the parameters used fit any
particular physical substance; however, their physical
meaning may be interpreted as follows. We wish to use units
in which latent heat L =1, heat capacity ¢=1, and heat
conductivity k=1, Since there are four units of measure-
ment that must be determined: computational length (/.),
energy (e.), temperature (7}, and time (¢,) units, we are
allowed one degree of freedom once we know the physical
parameters of the substance we wish to model. This degree
of freedom essentially allows us to scale the system in some
way. Using the values for nickel [21], for example, we find
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that L=2350J/cm’ = le./I}, ¢=542)/Kem*=1e./T.I,
k=0.155cm?/s = 112/1.. So 1T, =433 K. Suppose we wish
our computational box of size 10x 10 te correspond to
0.001 cm, then 1/,=0.0001cm, le,=235x10"%], and
1t,=6.45 x 10~* 5. Qur surface energy magnitude should be
F=15Tx10"%¢ /I?=37%x107° Jjcm’.

4.1. Computational Validation

411, Grid Size

Perhaps the most obvious source of computational error
is in the appreoximation of the smooth temperature field by
a finite grid with bilinear interpolation between grid points.
One of the effects of surface energy, however, is to make the
interface stable to perturbations with small wavelength
[11]. Thus, if the error produced by the computation grid
is sufficiently small and local, it should have little effect on
the accuracy of the computations.

Figure 4 shows the same computation using grid sizes of
200 and 1000, with grid densities (i.c., grid points per unit
length) of 20 and 100, respectively. The left computation
shown in Fig. 4 is a bit noisy; the sides of the dendrites are
not compietely smooth to the naked eye. In contrast, the
right computation appears completely smooth. Figure 5
shows a plot of the tip speeds (averaged over the four arms)
for several computations with different grid densities. The
effect of grid density is more striking here. It can be seen that
the tip velocities have settled down to a steady speed.
Table I shows these steady-state velocities. As grid density
increases, the tip speed decreases; however, the steady-state
velocities are within 1% of each other for grid densities of
80 and larger. Since tip speeds are quite sensitive to local

FIG. 4. The Wulff shape for these computations has eight sides, with energy 1 in the horizontal and vertical directions, and 0.9 ﬁ in the diagonal
directions. The overall energy multiplier is 0.001, the mobility multiplier is 50, and the undercooling is 0.5. The left computation has a grid size of
200 x 200, giving a grid density of 20 x 20. The maximum displayed time is 1.21 (contours are displayed at intervals of 0.2). The computation on the right
has a grid size of 1000 x 1000 and is shown to ¢ = 1.3. To the eye, the computations look almost alike, aithough the growth has been faster in the computa-

tion on the left.
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F1G. 5. Average tip speeds versus time for diflerent size temperature
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variations, it seems reasonable to conclude that the com-
putations are completely resolved with a grid density of 80.

The effect of variations in grid density is more dramati-
cally shown in Fig. 6. In these caiculations, the mobility is
80 and the undercooling is 0.7, producing a very rapid
growth. The computation on the left, which has a grid den-
sity of 20, is extremely noisy, with a great deal of side branch
activity. For a grid density of 80, however, there seems to be
almost no noise or side branches at all.

4.1.2. Grid Induced Anisotropy

Aithough it seems that most low wavelength noise can be
eliminated by using a sufficiently fine grid, interactions
between the interface and the grid seem to produce some
anisotropic effects, even for relatively isotropic surface
energies. Figure 7 shows a calculation in which the Wulff
shape has 120 sides and the energy is the same in each Wullf
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TABLE1
Steady-State Tip Speeds for Different Grid Densities

Grid density Tip speed
0 497
40 4.57
60 448
80 445
90 4.44
100 443

direction. The initial seed was given a fivefold symmetric
perturbation, so if the system were completely resolved, the
resuiting crystal should have an exact fivefold symmetry,
but a careful examination shows that this is not the case.
The effect of the underlying grid can be seen more strongly
in Fig. 8, where the initial seed is round, but the grid size is
800 x 400, i.e., less dense in the y direction. The crystal
shows a distinct tendency to grow in the vertical direction.
The above computations show that dendrites grow faster in
lower grid densities, however, so it is unclear that this
demonstrates a bona fide grid anisotropic effect. Finally,
Fig. 9 shows a computation in which an initial seed having
no imposed deformations grows on an 800 x 800 grid, but
with the shattering routine disabled; no new edges are
created. The grid has imposed an eightfold perturbation on
it. Presumably the perturbation was first induced when the
seed was very small and was amplified via the
Mullins—Sekerka instability [10}.

4.1.3. The Minimum Edge Length Parameter

Faceted crystals growing in a diffusion field frequently
form varifolds [ 137. The computer program approximates

FIG. 6. These computations use the same Wulff shape as in Fig. 4. The mobility is 80, and the undercooling is 0.7. The computation on the left uses
a grid size of 200 % 200, giving a grid density of 20 x 20. The maximum time shown is 1.22. The sides of the dendrites are very noisy and are covered with
side branches, The computation on the right uses a grid size of 800 x 800, giving 2 grid density of 80 x 30. The maximum time shown is 1.66. The sides

of the dendrites are almost sinooth, with few bumps and no side branches.

581114719
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FIG. 7. The Wulff shape for this computation has 120 sides, each of
which has the same energy. The energy multiplier is 0.001, and the mobility
is 50. u, =0.5. The grid density is 100 x 100 {1000 x 1000 grid), which is
extremely dense. The initial seed was given a fivefold perturbation, as can
be seen in this figure. The figure does not have an exact fivefold symmetry,
however, suggesting that the computation is not completely resolved,

these varifolds by a series of very small edges. In order to
keep the total number of edges under control, the user can
specify a “minimum edge length,” below which an edge will
not shatter. Since this parameter is non-physical, we must

FIG. 8. The Wullf shape for this computation has 120 sides, each of
which has the same energy. The energy multiplier is 0.001, and the mobility
is 50. The grid density is 8G x 40 (800 x 400 grid). The initial seed was Wulll
shaped. The crystal is not symmetric, however, seeming to grow preferen-
tially from top to bottom.
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FIG. 9. The Wulll shape for this computation has 120 sides, each of
which have the same energy. The energy multiplier is 0.001, and the
mobility is 50. The grid density is 80 x 80 {800 x 800 grid). The initial seed
was Wulff shaped, but anisotropic effects of the temperature grid have
turned it into a rough octagon.

ensure that it does not have a significant effect on the com-
putation. Computations in which the minimum edge length
is reduced show that, although the number of edges in the
computation increases, the morphology of the dendrites
remains unchanged as long as the minimum edge length is
smaller than the distance across a temperature grid cell.
This is unsurprising since the temperature field cannot he
resolved more finely than a temperature grid cell.

4.2. Simulation of Dendritic Growth

In this section we will examine some computational
simulations of dendritic growth. In each case we began with
a very small “seed” in the center of the computational
domain (which is generally a 10 x 10 box). The temperature
of the whole box is set at some fixed undercooling, and the
system is allowed to evolve.

421, Comparison with Ivantsov Selutions

One of the few exact solutions to Egs. (1) and (2) holds
in the limit as M — oo and 6 =0; ie., u(s) =0 on the inter-
face [9]. These solutions are known as Ivantsov parabolas
[8], because the solid is the set of points y such that

yg —x*2p+ Vi, (5)

where p is the tip radius of curvature. If we let u,, be the
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Time

FIG. 10. Tip speed vs time for 2=10.005, 0.007, 0.009, 0.01 (bottom to
top).

undercooling as y — o0, then we can relate u, to the Pecler
number

P=3pV (6)
by
U= —/nP e erfc(ﬁ), (7)
where erfc is
erfc(x)=1 —-ﬁ Lx e="dr. (8)

Note that this relationship does not determine the tip radius
and speed separately, but only their product. As might be
expected, without surface energy the speed is not uniquely
determined [9].

Comparison of simulations with Ivantsov solutions
produces varying results, as is to be expected since rigorous
Tvantsov solutions are based on several assumptions which
do not hold true for most simulations using crystalline inter-
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FIG. 11. Tip speed vs time for a =0.01, 0.02, 0.03, 0.04, 0.05 (bottom
to top).

faces. The most obvious difference is that the Ivantsov
parabola includes no surface energy effect; rather, the tem-
perature at the interface is the melting temperature. Further,
crystalline “parabolas™ are far from smoath at their tip, and
the temperature can vary significantly along edges near the
tip without inducing them to split. Thus, for many crys-
tailine Wulff shapes, it is difficult to estimate the “tip radius”
for the dendrite. These concerns notwithstanding, it is
possible to make some comparisons. In an effort to remove
the effects both of surface energy and crystalline anisotropy,
we ran several simulations using a Wullf shape baving 120
sides, a side with normal direction & having energy
7(1 — ot cos{46)). Thus we produce fairly smooth interfaces
with fourfold anisotropy, the magnitude of the anisotropy
depending on the parameter «. It is important to note that
there are two “types” of anisotropy at work here. Because ail
computations use “crystalling” surface energies, they are
inherently anisotropic, but there is also the “larger scale”
anisotropy represented by a, and it will be shown that it is
this anisotropy that controls the morphology of the growing
dendrite. As would be hoped, for sufficiently large «, the
small initial seed grows into a four-armed crystal, each of
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FIG. 12. Peclet number vs time.
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FIG. 13, The Wulff shape for these computations has 120 sides, with the energy in any Wulll direction being &(1 + a cos(44 —n/4)), where g is 0.001
and & is indicated above the figure. Mobility is proportional to energy, with a muitiplier of 100. The grid density is 40 x 40, and the undercooling is 0.5.

Simulation time for each computation is indicated above the figure.

which arms assumes a steady shape and growth rate.
Figure 13 show several computations for which the energy
multiplier is 0.001, the temperature is calculated on a grid
density of 40 x 40, and the mobility is 100: they differ only
in the anisotropy parameter o. Four distinct dendrites grow
from the four corners though there is some side branching
activity, especially for computations with low anisotropy.
Figure 10 shows a plot of the dendritic tip velocities versus
time for (bottom to top) a=10.005, 0.007, 0.003, and 0.01
(where we have averaged over the four arms), while Fig. 11
shows the tip speeds (bottom to top) for 2 = 0.01, 0.02, 0.03,
0.04, and 0.05. While somewhat noisy, they all do seem to be
settling down to a fairly constant speed, although a slight
upward curve may be detected for the smaller values of «,
suggesting that the steady operating state may not have
been determined.

Concentrating on the calculation in which &« =001, we
can calculate the tip radius of each dendrite by performing
a least-squares fit to the curves. For the values below, we fit
the 40 edges nearest to the dendrite tip; however, the
calculated tip radius did not vary significantly with different

TABLE II
Average Temperatures near Tip {120-gon, 2 =0.05)

Edges from tip Average temperature to tip

1 ~0.075
8 —0.073
16 —0.058
32 —0.036
64 -0.022
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FIG. 14, Peclet number determined from fitting a parabola through 20
points at different parts of the side of the dendrite having a Wulff shape
with 120 sides.

numbers of points taken, indicating that the tip closely
approximates a parabola. Figure 12 shows a plot of the
Peclet number versus time after the dendrites have settled
into the parabolic steady state. The four symbols represent
the four dendritic tips. Note that the values for the four tips
remain very close to onc another, indicating that they are
essentially the same calculation. The fluctuations appear to
be random, but they are not very large, and they remain
close to the value of 0.187 predicted by Eq. (7) for an under-
cooling of 0.5. The time average of the Peclet numbers over
the four tips is 0.185, which is extremely close to the
predicted value. )

As we change the parameters from the near isotropic,
near zero surface energy, this fit to the predicted Ivantsov
solution becomes less exact. In the fourth computation
shown in Fig. 13, the anisotropy parameter « is 0.05. Note
that the dendritic tips are much more clearly defined, with
almost no side branch activity. The tip is less parabolic than
in the above exampie; Fig. 14 shows a plot of several Peclet
pumbers for which the “tip radius” was determined by fit-
ting parabolas to 20 data points at varying distances from
the tip. The side of the dendrite closely fits a parabola with
width 0.063, while the acteal tip has much higher curvature
than such a parabola. Using the plateau value of .063 as the
“tip radius,” we find a Peclet number of (.177, which is only
5% below the “predicted” value of 0.187. It remains to be
explained why a parabola fitted to the tip is so much sharper

TABLE II1

Vital Statistics for Different Anisotropies of a 120-gon

o P Speed P
0.005 0.28 1.7 0.24
0.007 0.20 19 0.19
G.009 017 21 0.13
0.010 o617 22 Q.19
0.020 0.10 37 0.19
0.030 0083 4.5 0.19
0.040 0.071 51 0.18
0.050 0.063 5.6 0.18
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FIG. 15, The Wulff shape for this computation has eight sides, with
the energy in the horizontal and vertical directions being 1 and 0.9 ﬁ in
the diagonal directions. The overall energy multiplier is 0.001. Mobility is
proportional to energy, with a multiplier of 100, The grid density is 40 x 40,
and the undercooling is 0.5. The maximum time is 0.91; plots are shown
every 0.11. Computational instabilities introduced by the grid density and
amplified by the high mobility have resulted in some side branch activity.

than one fitted along the side. Table Il shows the mean
value of the temperature along the dendrites integrated to
various distances from the tip. Note that, as the distance
from the tip increases, the temperature at the interface morg
closely approximates 0. The Peclet number associated with
an undercoeling of 0.425 is 0.114, which is in the right range
for parabolas near the tip. Table III shows the tip velocities,
tip radii, and Peclet number for several calculations
(inciuding those shown in Fig. 14).

In contrast to the above calculations, Fig. 15 uses a sur-
face energy which is extremely anisotropic in both senses of
the word. The Wulff shape is a truncated square, having
magnitudes of | in the horizontal and vertical directions and
09 \/5 in the diagonal directions (roughly corresponding to

0.26
0.24
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0.14
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1 24 40 60 80 100 120 149

FIG. 16. Peclet number determined by fitting a parabola to 20 points
at different places along the side of a dendrite having a truncated square
Wolff shape.
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an o of 0.13). Tt is thus impossible for the tip to be at all
smooth, although other parameters are similar to the above
cases. The dendrites formed do approximate parabolas,
however. In Fig. 16 we again plot the Peclet number as
determined from various distances along the edge, using the
average tip speed of 7.2. Again, the dendrite seems to be
much sharper near the tip than along the sides, approaching
a plateau somewhere in the middle which is within 7% of
the value predicted by Eq. (7). This seems quite reasonable
since this example has begun to show a fair amount of side
branch activity, which also would explain why the values
seem to be somewhat high rather than low, as was seen in
the above case.

T = 0.71, emult = 0.0001

ROOSEN AND TAYLOR

4.2.2. Effects of Variation of Surface Energy Magnitude

In the absence of side-branching, the effect of changes in
the magnitude of the surface energy is somewhat subtle.
Figure 17 compares calculations in which only the
magnitude of the surface energy (equivalently, the capillary
length) is changed. In the first one, some very short
wavelength side branching can be observed., As would be
predicted, the side branches can be observed. As would be
predicted, the side branches disappear when the surface
energy increases, At higher surface energies, the dendrites
are blunter since edges must be snuch longer or temperature
differences more severe in order to produce shattering.

T = 1.27, emult = 0.0008
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FIG. 17. The Wulff shape for these computations has eight sides, with the energy in the horizontal and vertical directions being ! and 0.9 \/5. in the
diagonal directions. Mobility is proportional to energy, with a multiplier of 50. The grid density is 80 x 80, and the undercooling is 0.5. The overall energy

multiplier and total simulation time is indicated above each figure.
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FIG. 18. Average tip speeds with time for surface energy magnitudes
of (top to bottom) 0.0001, 0.0002, 0.0004, 0.0008, 0.002, D.004, 0.008, and
0.016.

Figure 18 displays the average speed of the four dendritic
tips with time for eight computations. Note that the tips
take longer and longer to achieve a stcady operating speed
as cnergy increases, and it is not entirely clear that the last
three have attained their final speed. In Table IV we display
the number of edges, the operating speed (taken to be the tip
speed near the end of the computations), the tip radius, and
the Peclet number for each of the different energy multi-
pliers. It should be noted, of course, that with stronger
energy the tips become much less parabolic. Thus (par-
ticularly in the last two cases) the tip radius and Peclet
values must not be given too much weight. Unsurprisingly,
the Peclet number is close to the predicted value of 0.187 for
low energies, but gets further away when the surface energy
becomes high. Also for higher energies, the interface lags far
behind the temperature field, which becomes much more
spread out. This is why the computations ended relatively
carly, as they stop when the temperature field begins to
affect the boundary.

4.3. Effect of Variations in the Mobility Magnitade

In this section we will examine the effect of changing the
mobility parameter on the computdtion. Figure 19 shows
four computations in which the undercooling and surface
energy remain fixed, but the mobility varies from 1 to 64.
Interestingly, the effect of mobility seems to be similar to
that of surface cnergy magnitude. Table V shows the tip
radius {p), tip speed, Peclet number, and number of edges
for several computations. Note that in the first three com-
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TABLE IV
Vital Statistics for Different Capillary Lengths

Emult P Speed 2 No. edges
Q.0001 0.036 9.5 0.17 20364
0.0002 0.042 83 .17 9808
0.0004 0.052 6,7 0.17 8700
0.0008 0.070 50 .18 6972
0.0020 0.12 30 0.18 5240
0.0040 0.20 19 0.19 4920
0.0080 035 1.4 025 3512
0.0160 0.57 0.74 021 3024

putations, the tips have not reached a steady-state speed.
The speed values for these computations are the final speeds
attained.

In the first computation of Fig. 19, the mobility
magnitude has the extremely low value of 1. The interface
responds to the undercooling very slowly. Although the
crystal shatters at an early stage, the ‘breaks do not grow
very quickly. Observation of the moving interface shows
that the crystal seems to grow in a sort of layering fashion:
once the corners have lifted up, short edges having zero cur-
vature sweep in from the corners to meet in the centers of
each edge. In the next computation, the corners of the crys-
tal are forming distinct parabolas, and by the third com-
putation, the tips are narrow enough to allow some points
of negative curvature between the tip and the base.

A mobility of 32 produces a computation which matches
a predicted Ivantsov selution, having a Peclet number close
to 0.19. Higher mobilities have progressively larger Peclet
values and also more side branch activity. In the last com-
putation of Fig. 19, the sides of the dendrites seem some-
what rough and irreguiar, as if side branches may be about
to sprout. This suggests that interfaces are more unstable at
high speeds. These computations also demonstrate the
difficuity of producing “clean” computations with high
mobilities; small perturbations are exaggerated by the high
mobility, and so the temperature grid must be made denser
to compensate.

TABLE V
Vital Statistics for Different Mobility Calculations

Mobility o Speed P No. edges

1 0.59 0226 0077 9784

2 0.59 0.40 012 12552

4 0.38 0.70 .13 21144

8 0.26 1.2 Q.16 26696

3 0.11 33 0.i8 12894

64 Q.07 5.2 0.18 4546
128 0.051 7.6 0.19 2798
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4.4. Movement Using Low Temperatures

As was mentioned in Section 3.3.1, it is possible to imple-
ment a different formula to determine the speed with which
each edge should move. In particular, there is some physical
justification to having the speed of each edge e be v(ej =
M(n(e))(— T{e) —wmc(e}) with T{e) the low temperature
along the edge. Small layers are assumed to nucleate at the
coldest point and rapidly spread across the length of the
edge. In order to shatter edges using this movement for-
mula, we are obligated to use the first shattering method
described in Section 3.3.3. The differences can be quite
striking. Figure 20 shows two computations which use
the trial and error shattering method. The computation

ROOSEN AND TAYLOR

on the left uses the low temperature along the edge for
movement. (Since we are interested in sidebranching, a
somewhat coarse temperature grid was used.) The resulting
crystal 1s distincily “crystalline,” having extremely angular
dendrites and side branches. By comparison, the second
computation, using the trial and error shattering and the
mean temperature along an edge for movement, appears
quite similar to computations that use the “exact” shattering
method, yet it is far different from the computation on
the left. It is less angular by far, and the dendrites are
much more parabolic. This is perhaps to be expected, as
the hypotheses to the Ivantsov parabolic solution (see
Section 4.2.1) are little respected by the computation in the
first figure,

T = 9.63, mobility = 1 T = 5.48, mobility = 4
10— ——————— ————— R —
s 1 Sl J
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6l 4 ek i
L) 1 |
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T T
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FIG. 19. The Wulff shape for these computations has eight sides, with the encrgy in the horizontal and vertical directions being | and 0.9 ﬁ in the
diagonal directions. The grid density is 0 x 80, and the undetcooling is 0.5. Mobility is proportional to energy with a multiplier indicated above each

figure. Simulation time is also indicated.
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FIG. 20. These computations both us¢ the trial-and-error shattering method, and they use an undetlying temperature grid of size 400 x 400, but the
computation on the left uses the low temperature along an edge to determine its velocity, and the computation on the right uses the average temperature
to determine velocity. The Wulll shape is a truncated square with energy multiplier 0.001 and mobility multiplier 50, and the undercocling is 0.5 in both
cases. Maximum time displayed is 4.33 for the left computation and 6.98 for the right. Note that using low temperature produces much more “crystalline”
side branching, while the dendrites on the right, although noisy, are quite parabolic.

5. CONCLUSION
5.1. Evaluation of the Method

A new method was presented for computing the motion
of an interface under the influence of its curvature and a
diffusion field. Since we restrict attention only to those
interface energies which are completely crystalline, several
computational problems are simplified. ¥t is not reguired
that curvature be calculated explicitly. Instead, we need
only measure the lengths of edges. It is also easy to detect
and make topological changes in the interface; sincc we
know the ailowed normal directions, we need only compare
edges which have parallel normals to know if two parts of
the crystal have intersected. Computations concerning the
interface alone are also quite fast. Since the speed of the
interface is explicitly calculated, we are only concerned with
values along the interface itself. This is in contrast to the
phase-field method, which must calculate the phase field at
each point in the computational domain [20]. The speed of
the computation is largely determined by the size of the tem-
perature grid, since heat release and flow take roughly 75 %
of the total computational time. It is also straightforward to
change the exact formula used to determine the speed of the
edges, the most difficult obstacie being to determine a “shat-
tering routine” for the particular rule used. Preliminary
computations suggest, however, that a general purpose
scheme allowing all possible breaks to occur and finding

- which ones expand works reasonably well.

There are three limitations to the method, all of which can
be overcome to a greater or lesser degree. Ficst, it must be
able to approximate varifolds by many edges with small
lengths. The minimum edge length parameter is used to
keep these small edges from becoming unmanageable short,

and it has been demonstrated (Section 4.1.3) that having
such a parameter does not significantly affect the computa-
tions if it is chosen to be smaller than the size of a tem-
perature grid cell. It is also possible to incorporate
“dummy” edge directions in the initial Wulff shape, Most of
the computations shown above use a “truncated square”
Wulff shape, which i, in fact, an approximation to a true
sguare. The extra diagonals allow dendritic arms to grow
with varifold sides and many fewer edges. A related limita-
tion is that the method can only be used to study completely
crystalline surface energies. The program is able to handle
Wulff shapes with many sides, however, so it is easy to
approximate smooth surface energy functionals by crys-
talline ones with many sides. Finally, the mobility must be
finite. In this it is similar to most competing methods (with
the exception of [1]). It is possible to take a very high
mobility in order to approximate an infinite mobility, but
this has computational difficulties since it tends to
exaggerate noise produced by the temperature grid.

It should be straightforward to model other moving
boundary problems. Code has been written to include triple
junctions in interfaces, This would allow such things as
computations of grain growth and more realistic merging of
boundaries when two seeds touch. The code has not been
tested, however, and extra routines will be required to
correctly model the motion of triple junctions.

It should be even easier to model the influence of multiple
diffusicn fields on the interface, a temperature field, and a
concentration field, for example, or concentrations of multi-
ple materials, The exact shattering method is easily modified
to handle two 6r more such fields. Multiple fields combined
with triple junctions can be used to model eutectic growth,
Vastly differing length and time scales of the diffusion fields
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or direct influences of one field on another would pose the
same difficulties for this method as for any other, however.

It would also be desirable to study the effect of changing
the velocity formula for edges. At this point the assumption
has been made that speed is directly proportional to the
driving force. It is possible, however, that velocity response
to the driving force should not be simply linear, but
exponential on facets around which the crystal is convex,
and this would be simple to model using the crystalline
computational model.
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